
IR-Case Tool

João Ferreira1, Alberto Silva2, and José Delgado3

1 ISEL, 2 INESC-ID, 2,3IST,
1jferreira@deetc.isel.ipl.pt
2alberto.silva@acm.org

3Jose.Delgado@tagus.ist.utl.pt
Telephone number, incl. country code

3rd E-mail

ABSTRACT
We propose a new approach based on a methodology assisted by
a IR-Case tool for the creation of IR (Information Retrieval)
systems inspired on a set of best practices or principles: it is based
on high-level models or specifications; it is component-based
architecture centric; it is based on generative programming
techniques. This approach follows in essence the MDA (Model
Driven Architecture) philosophy with some specific
characteristics. We propose a repository that keeps related
information, such as models, applications, software architectures,
generated artifacts and even information concerning the software
process itself (e.g., generation steps, tests and integration
milestones). Generically, this methodology receives system
requirements (e.g., functional, non-functional and development
requirements) as its main input, and produces a set of artifacts
(e.g., source code, configuration scripts or data scripts) as its main
output, that will be linked in the IR-Case tool proposed,
generating the IR-System. These aspects are implemented in a
tool (IR-Case tool), providing a roadmap where designers can
follow as well as model-to-model transformation templates in
order to accelerate their system development tasks. This step
facilitates the construction and consequently will contribute for
the personalized IR-Systems and also a test platform for IR-
Algorithms and IR-Process.

Keywords
UML, MDA, Retrieval Information, Case Tool.

1. INTRODUCTION
Information Retrieval (IR) has been developed during the last four
decades based on algorithms and methods. The development of IR
systems is a complex process, usually performed by groups of IR
researchers or commercial companies. Usually the creation of IR
systems is not a collaborative effort among groups in spite of the
existence of commons modules among the IR systems. These
efforts highlight a lack of availability of specific (Personalized)
IR systems, because it is a complex task. At the beginning of this
decade, some modular IR platforms have been done [1,2,3] but
these modules are still too large to allow flexibility. On the other
hand, if we have smaller modules, the new appearing problem
would be how to assemble them together, like a LEGO
construction without instructions. To avoid these problems, some
IR systems [1,2] give some flexibility through the availability of
several options in a predefined API. This scenario leads us to a

new approach regarding IR systems’ construction based on
models, that integrates the best practices and fundaments around
the Model Driven Architecture (MDA) paradigm and
specification of requirements, such as modularization, separation
of concerns, reutilization, use-case driven, model-to-model and
model-to-code transformations [4,5,6]. This approach has been
applied in software engineering areas [7,8,9,10], and the most
related works were on personalization of websites using modeling
methods [11,12,13,14], due to the diversity of personalization
policies over the development cycle of websites. We intend to go
further steps ahead integrating on this process the creation of IR
systems. This approach makes sense due to the use of common
modules parts in different IR systems and also due the diversity of
retrieval approaches. There is a big number of different IR
systems [15,16,17,18] always constructed from zero. In spite all
the diversity of systems, they relay on the same principals, use
statistic proprieties of documents, creation of documents’
representatives with smaller dimensions, interfaces that users
allow to perform queries, expand, feedback, matching and
optimization methods. On the other hand, from the MDA/MDE
perspective it is important to stress the following references: (1)
MDA [19] is the OMG’s framework for software development
life cycle, driven by the activity of modeling [20], which makes
models first-class entities; (2) MOF [21] is the foundation of
OMG’s approach, by supporting model exchange and
transformations which can be applied to any modeling language,
as long as it is MOF-based; (3) UML [22] is a general-purpose
modeling language, originally designed to specify, visualize,
construct and document information systems (nevertheless, UML
is not restricted to modeling software and is often used for other
purposes like business process modeling); (4) the XMI format
[23] is a standard commonly used to exchange UML models
between tools, although it can also be used with other MOF-based
metamodels; (5) the MOF QVT [24] is another standard, still
under finalization, for defining query, view and transformation
operations on MOF-based models, effectively allowing the
transformation of source models into target models, which makes
QVT a critical component of MDA. Today there is a couple of
commercial tools such as Telelogic’s DOORS and TAU G2, and
IBM’s RequisitePro, Software Modeler, and Software Architect
already present a mature and deep integration, enabling engineers
to enforce traceability between requirements, models, and source
code, through a common environment, but none of these tools are
prepared to constructed IR-Systems or to taken in account
specifies of IR-systems.

2. Methodology
2.1 Main Actors
We propose a new methodology for the creation of IR systems
inspired on a set of best practices or principles: it is based on
high-level models or specifications; it is component-based
architecture centric; it is based on generative programming
techniques. This approach follows in essence the MDA
philosophy with some specific characteristics. We propose a
repository that keeps related information, such as models,
applications, software architectures, generated artifacts and even
information concerning the software process itself (e.g.,
generation steps, tests and integration milestones). Figure 1
overviews the methodology, in particular the main actors and
corresponding tasks. Generically, this methodology receives
system requirements (e.g., functional, non-functional and
development requirements) as its main input, and produces a set
of artifacts (e.g., source code, configuration scripts or data scripts)
as its main output. The tasks performed by the software architect
are critical to the process of creation of an IR system.
The architect is responsible by the following tasks: (1) to define a
suitable and easy-to-use UML profile (IRML); (2) based on
IRML, to define abstract models; (3) to define and to select an
IR infra-structure to support the IR system; (4) to develop
templates: (i) to model transformation features, such as
“Model2Model Transformation Templates”, (ii) to produce new
models, (iii) to develop model-to-code template features, such as
“Model2Code Transformation Templates”, and (iv) to produce
software and documentation artifacts from models, using
generative programming techniques. Starting from system
requirements (created for instance from meetings, interviews,
JAD sessions among designers, clients, end-users and other
stakeholders) [25]. The Requisites Engineer collects objectives
and identifies the motivation to create the system. The Designer is
responsible for the design of the IR system through available
models, producing an integrated set of models (the “Design
System” task). Still, the designers can apply model
transformations automatically according the “Model2Model
Transformation Templates” developed previously by architects.
This task can be useful in certain situations in order to simplify or
to accelerate the design task. The correctness and quality of the
models produced are essential to obtain good results in the
subsequent tasks. After the design intervention, programmers
apply model-to-code transformations, which means to apply
generative code techniques to models, based on templates
provided by the architects. Because it is not possible to capture
and to design all the system requirements, programmer
intervention is still required The Developer creates systems via
the MDA approach proposed (see Figure 2). Conceptual models
are transformed into XMI (T1) and simplified in XML (T2). From
these XML models, and with appropriate templates created in an
inverse engineering process, we generate the modules of the IR
system, which are linked the Eclipse Platform, a well-known and
stable platform with widespread support in the Java community.
Although commonly known to software developer community as
an open-source IDE (Integrated Development Environment) for

Java software development, Eclipse should be best described as
“an open universal framework for building developer tools” [26].
Consequently, programmers are involved to produce specific
components, typically helper source code, such as facades,
adapters, controllers and business logic.

2.2 IRML
Based on UML we propose a meta-model for IR (IRML), based
on new a stereotype specific for IR [27]. IRML is a set of
coherent UML extensions (Figure 4, is a proposal) that allow a
high-level, visual modeling way to design interactive systems.
The main idea is to have a standard language UML which could
act as: (1) standardization and systematization of IR concepts and
notation; (2) establishment of rules and guides for code generation
through appropriate templates, which transform XML system
models in written code expressed in a predefined chosen
language. This templates are constructed based on the knowledge
of final code on an inverse engineering process; (3) development
of IR-systems (construction) based on models; (4) central
database could store models and templates; (5) common interface
between modules. To simplify the design of IR-Systems we
propose three views. These views act like the different views in
an architectural project of a house and simplify the process by
dividing the problem in smaller pieces. The views are chosen
between a compromise of simplicity (more views) and complexity
(less views). We observed that these three views simplify the
process of construction of IR-System and at the same time are
enough to describe the problem:
(1) The IR-UseCaseView defines IR-Actors and their actions on
the system. In this view the external relations of the system and
the main objectives are defined: (2) IR-InformationView defines
the system data input and output. In this view, the data flow is
shown using class diagrams; (3) IR-ProcessView, in which
attributes and sequence of actions to transform input into output
are defined according to the proposed objectives.

Figure 2: Code generation from models with appropriate
templates.

Figure 1: Methodology for the creation of IR systems.

Figure 3: Metamodel for IRML.

IR -P roc e s sIR -C olle c tion

IR -D oc um e nt IR -Inde x P roc e s s IR -M a tc h ingP roc e s s IR -O ptim iza tionP roc e s s

IR -E s tim a tionP roc e s s
IR -Inde x

IR -K now le dge S pa c e

IR -In fo rm a tionN e e ds

IR -S ys te m

IR -R e s ults

IR -A c tor

IR -A lgorithm

u se >

u se >

+ i n p u t

u se >

u se >

u se >

p a ra m e te r

l i st o f d o cu m e n t o rd e re d b y a re l e va n ce m e a su re

a u to r

i n fo rm a ti o n n e e d

cre a te

2.3 Models and Templates creation
Basic and specific IR models were created through a modeling
tool for UML (e.g. Enterprise Architecture) and converted
automatically into XML format. Models are created in high level
follow IRML language in different levels of complexity storage in
a central place for future use. This action is performed on a UML
tool (Enterprise Architecture 5.0) which had capacity of produce
the XMI (XML Metadata Interchange) code from the model
identified. The XMI is a standard of OMG for data exchange
between platforms. Also the UML and the XMI are the base for
MDA (Model Driven Architecture) which goal (Figure 2) is to
define a set of rules and techniques used to modify one model in
order to get a different new model. Mappings are used to
transform PIM (Platform Independent Model) into PSM (Platform
Specific Model) and the opposite. The UML profiles play an
important role in MDA, since MDA leverage usage between
models. There are several techniques to perform this
transformation and generate automatic code. Templates are a pre-
build form, having as input an simplified XML of each model,
and the output is the source code of that model. To each model, it
is necessary a template for a specific platform. This template is
being developed into one of the three platforms of IR (OpenFts,
Terrier and Lemur). These templates will be created using an
engineer inverse process performed from the final code that we
want to reach. Models and templates were stored in a central
database for future use. This is a first step and on a second phase,
we intend to create templates independent of any platform and
provide a variety of different granular modules that allow the
users to easily build an IR system. Models and templates available
are stored in a central database for future reuse. Developers can
contribute with templates, models, and users with available
models and templates to create appropriate IR Systems.
The proposed approach allows reusing knowledge captured in
previous projects and IR-System constructed by using
“applicational templates”. This allows accelerating the process by
employing the concept of develop-by-reuse [28] and minimizing
error introduction through a constant quality improvement process
of the captured expertise. This same approach, but according to
another perspective, can be applied having as its main goal the
creation of a templates repository, thus supporting the concept of
develop-for-reuse [28], whose main objective is to define a
requirements documents templates catalog/library. These later
templates, “architectural templates”, are based on re-factored
requirements, hence improving their range of possible application,
assuring simultaneously that they incorporate the best practices of
requirements documents and use cases writing patterns [29].

2.4 IR-Case Tool
IR-Case tool is an integrated environment that supports the central
tasks of the IR software development, mainly: requirements
specification, architecture definition and system design. The IR-
Case tool is built on top of the Eclipse.NET platform [30], using
knowledge of ProjectIT performed at INESC-ID’s Information
System Group [31, 32], which provides an extensible plugin-
based architecture framework for developing other tools. Figure 4
presents the high-level IR-Case tool components architecture and
Figure 2 shows the steps to transform models in modules (small
pieces of programming code) and link then to build a IR-System.

Main tasks to be performed are: (1) Components (IR-Module),
conceptual models are transformed into XMI (T1) and simplified

in XML (T2). From these XML models, and with appropriate
templates created in an inverse engineering process, we generate
the modules of the IR system, which are linked the Eclipse
Platform, a well-known and stable platform with widespread
support in the Java community; (2) Integration, the components
generated from models through templates and the platform
components used should be integrated into a program (IR-
System). For this process we will use the Eclipse Platform that is
a well-known and stable platform, commonly known as an open-
source IDE (Integrated Development Environment). This
integration platform provides the means that allow these
components to communicate efficiently and release the IR-
system. Code duplication bug will have less probability of
appearance; (3) Platform, this approach allows the creation of IR
systems by the integration of different modules on a specific
program language (C#, Java, etc) or in different IR-platforms (e.g.
Lemur, Terrier, Okapi, Smart, etc).

2.5 Modularity
This methodology and IR-Case tool make sense if we make
available small pieces, which allow the diversity construction of
IR-System like a LEGO construction through the availability of
small modules and templates. We start first templates to big
modules (e.g main modules of Lemur and Terrier IR systems).
Also in future we intend: (1) increasing models and templates
available at central system database; (2) creation of templates for

different programming language (e.g. C#, Java, …); (3) improve
existing templates and models.

3. WebSearchTester: Test Platform for IR-
Systems
To show the advantages the construction of IR systems by using
the proposed IR-Case tool we start building a test IR system
called WebSearchTester, (for details see [33]), to test advantage
of IR-Case tool on the construction of different IR systems using
common modules. A framework is a program skeleton that
defines the basic concepts of an application domain usually
developed to support a whole set of related applications in
contrast to developing individual applications from scratch. In the
IR domain, a useful IR framework should provide the option of
applying different models for indexing and retrieving information
(e.g. the probabilistic or the vector space model). The main
purposes of the WebSearchTester framework are: (1) create a
common platform that support the following IR models: Boolean,

Figure 4: Top-vision of the model-based approach for IR
systems development.

M o d e ls

X M L

IR M L

C o m p o n e n ts

E x e

J a v a .n e t

IR S ys te m X Te m p la te s

G e n e ra l IR Te m p la te s

A p l ic a tio n Te m p la te s

C o n c e p tu a l IR
S ys te m

b a se d

b a se d

l i n ke r

c o d e g e n e ra t i o n

b a se d

t ra n sfo rm

Vectorial, Document generation (classical probabilistic,
implemented Okapi measure), Query generation (Languages
model), Logistic Regression (LR), Inference network, Concept
space model, Probabilistic distribution, Link analyses, KL
divergence, Markov chain, Fusion of results from different
models and also Classification. Details of this implementation can
be found at [34]; (2) easy way to test and create IR algorithms and
process, collaborative environment adequate to the exchange of
ideas; (3) make available better and comparable evaluation of
different models based on a common infrastructure; (4) promote
research in a collaborative environment; (5) propose a common
framework for IR, filtering and classification applications; (6)
support personalization analysis: can be used to rank IR results in
terms of users’ preferences.

4. Conclusions
We proposed a new way of construction IR systems based on
models and automatic code generation. The potential behind this
approach is enormous, providing tools for collaboration increase
between groups and construct IR system that can easily be
changed. Models and templates could be stored and organized in
a central database to be used in a distributed and universal way.
This tool could also be used to build a central and common test
system where IR investigators could test their ideas and new IR
algorithms without big efforts and in a standard way.

5. REFERENCES
[1] Lemur <www.lemurproject.org/>
[2] Terrier <ir.dcs.gla.ac.uk/terrier/>
[3] Okapi < http://www.soi.city.ac.uk/~andym/OKAPI-PACK/>
[4] OMG\ MDA. <http://www.omg.org/mda/>
[5] OMG. “White Paper on the Profile mechanism”, Version 1.0,

OMG Document ad/99-04-07. OMG UML Working Group.
[6] Kotonya, G., Sommerville, I., Requirements Engineering

Processes and Techniques, NY. Jonh Wiley & Sons, 1998.
[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design

Patterns – Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[8] C. Hofmeister, R. Nord, D. Soni. Applied Software
Architecture. Addison Wesley, 1999.

[9] The Software Patterns Series. Addison Wesley, 1996-2002.
[10] M. Juric, et al. J2EE Design Patterns Applied. Wrox. Press.
[11] Koch, N., Kraus, A. and Hennicker, R. (2001). The

Authoring Process of the UML-based Web.Engineering
Approach. In Proceedings of the 1st International Workshop
on Web-Oriented Software Technology.

[12] De Troyer, O. and Leune, C (1998). WSDM: A User-
Centered Design Method for Web Sites. In Computer
Networks and ISDN systems Volume 30, Proceedings of the
7th International WWW Conference, pages 85-94, Elsevier.

[13] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S.
and Matera, M.(2002). Designing Data-Intensive Web
Applications. Morgan Kaufmann Publishers Inc..

[14] Frasincar, F., Houben, G.-J. and Vdovjak R. (2002).
Specification framework for engineering adaptive web
applications. 11th WWW Conf., Web Engineering Track.

[15] <http://bit.csc.lsu.edu/~kraft/retrieval.html>
[16] <http://www.dcs.gla.ac.uk/idom/ir_resources/ir_sys/>
[17] <http://www2.sims.berkeley.edu/resources/collab/>
[18] <http://www.glue.umd.edu/~dlrg/filter/software.html>
[19] Object Management Group, (2003) “MDA Guide v 1.0.1”.
[20] Kleppe, A., Warmer, J., Bast, W., (2003) “MDA Explained:

Architecture: Practice and Promise”, Addison-Wesley, 2003.
[21] Object Management Group, (2006) “Meta Object Facility

(MOF) Core Specification”, January 2006.
[22] Object Management Group, “Unified Modeling Language:

Superstructure–Specification Version2.0”, August 2005.
[23] Object Management Group, (2005) “MOF 2.0/XMI Mapping

Specification, v2.1”, September 2005.
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf

[24] Object Management Group, (2005) “MOF QVT Final
Adopted Specification”, November 2005.
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf

[25] Kotonya, G., Sommerville, I., Requirements Engineering
Processes and Techniques, NY. Jonh Wiley & Sons, 1998.

[26] Shah R. working the Eclipse Platform, http://www-
106.ibm.com/developerworks/opensource/library/os-eclipse.

[27] Ferreira, João; Silva, Alberto; Delgado, José (2006). IRML -
Information Retrieval Modeling Language. Proceedings of
MSO 2006, 6th IASTED, September, Gaborone, Botswana.

[28] Cybulski, J., “Application of Software Reuse Methods to
Requirements Elicitation from Informal Requirements
Texts”, PhD Thesis, La Trobe University, Australia, March
2001.

[29] Examples of requirements document’s templates:
http://www2.ics.hawaii.edu/~johnson/413/lectures/5.2.html,
http://www.devdaily.com/java/misc/ReEnableExternalUser/n
ode1.shtml>

[30] http://www.sourceforge.net/projects/eclipsedotnet
[31] Saraiva, J., Silva, A. , (2005) “Eclipse.NET: An Integration

Platform for ProjectIT-Studio”, Proceedings of the 1st Int.
Conf. on Innovative Views on .NET Technology, (Porto,
Portugal, June2005), ISEP and Microsoft.

[32] Saraiva, J., (2005) “Desenvolvimento Automático de
Sistemas – Relatório Final de Trabalho Final de Curso”.

[33] <http://www.deetc.isel.ipl.pt/matematica/jf/>
[34] Ferreira, João; Silva, Alberto; Delgado, José (2005). A

modular platform applicable to all statistical retrieval
models, Proceedings of the ITA05, September, in Wrexham,
Wales.

