
From Requirements to Automated Acceptance
Tests with the RSL Language

Ana C. R. Paiva1,2(B), Daniel Maciel1, and Alberto Rodrigues da Silva3

1 Faculdade de Engenharia da Universidade do Porto,
Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

apaiva@fe.up.pt
2 INESC TEC, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

daniel.ademar.maciel@gmail.com
3 INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

alberto.silva@tecnico.ulisboa.pt

Abstract. Software testing can promote software quality. However, this activ-
ity is often performed at the end of projects where failures are most difficult
to correct. Combining requirements specification activities with test design at
an early stage of the software development process can be beneficial. One way
to do this is to use a more structured requirements specification language. This
allow to reduce typical problems such as ambiguity, inconsistency, and incor-
rectness in requirements and may allow the automatic generation of (parts of)
acceptance test cases reducing the test design effort. In this paper we discuss an
approach that promotes the practice of requirements specification combined with
testing specification. This is a model-based approach that promotes the alignment
between requirements and tests, namely, test cases and also low-level automated
test scripts. To show the applicability of this approach, we integrate two com-
plementary languages: (i) the ITLingo RSL (Requirements Specification Lan-
guage) that is specially designed to support both requirements and tests rigor-
ously and consistently specified; and (ii) the Robot language, which is a low-
level keyword-based language for specifying test scripts. This approach includes
model-to-model transformation processes, namely a transformation process from
requirements (defined in RSL) into test cases (defined in RSL), and a second
transformation process from test cases (in RSL) into test scripts (defined accord-
ing the Robot framework). This approach was applied in a fictitious online store
that illustrates the various phases of the proposal.

Keywords: Requirements Specification Language (RSL) · Test case
specification · Model-based Testing (MBT) · Test case generation · Test case
execution

1 Introduction

Software systems are becoming increasingly complex and operating on more critical
systems. This reality makes it more urgent to run software tests that promote the quality
of these systems. One aspect of software quality is its ability to meet the implicit and
c© Springer Nature Switzerland AG 2020

E. Damiani et al. (Eds.): ENASE 2019, CCIS 1172, pp. 1–19, 2020.
https://doi.org/10.1007/978-3-030-40223-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40223-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-40223-5_3

2 A. C. R. Paiva et al.

explicit needs of customers. For this, it is important to reach a common understanding
between clients and developers about what should be developed.

Requirements Engineering (RE) helps to create the basis of understanding between
stakeholders and programmers about the software system to develop. The resulting sys-
tem requirements specification (SRS) document helps to structure the view on the soft-
ware system and allows [1–4] to agree between users and developers on the validation
and verification support of the scope of the project and support future system mainte-
nance activities. The problem is that the manual effort required to produce requirements
specifications is high and suffers from problems such as incorrectness, inconsistency,
incompleteness and ambiguity [2,3,6].

ITLingo is a long-term initiative aimed at researching, developing and applying rig-
orous IT specification languages, i.e., Requirements Engineering, Test Engineering and
Project Management [22]. ITLingo takes a linguistic approach to improve the accuracy
of technical documentation (e.g., SRS, test case specification, project plans) and, as a
consequence, promote productivity through reuse and model transformations as well as
promote systems quality through semi-automatic validation techniques.

Requirements Specification Language (RSL) is a controlled and integrated natu-
ral language with ITLingo that assists in the production of requirements specifications
in a systematic, rigorous and consistent manner [5]. RSL includes an advanced set of
constructs that are logically organized into views according to specific RE concerns at
different levels of abstraction, such as business, applications, software, or even hard-
ware levels.

Software testing can also be useful as a measure for assessing the software develop-
ment process by measuring the number of tests that pass or fail and conducting regres-
sion tests to foster product quality by alerting developers to potential defects as soon as
code is changed.

Acceptance tests are those that are most closely related to requirements as they
reflect what the end user considers important to test (needs, requirements and business
processes) to accept or not the software that is being developed [25].

To reduce the time and resources required, it may be helpful to perform acceptance
test design and specification requirements in parallel [11]. Although it is considered
a good practice to start testing activities at the beginning of the project when require-
ments are elicited, this does not always happen because elicitation and requirements
testing are separate in traditional development processes. This research paper presents
an approach based on the Model-Based Testing (MBT) technique [25] that aims to fos-
ter the initiation of testing activities early in line with the requirements specification.
MBT is a software testing approach that generates test cases from abstract representa-
tions of the system, named models, either graphical (e.g., Workflow models [16], PBGT
[19,20]) or textual (e.g., requirements documents in an intermediate format) [24].

Fig. 1. Key structural concepts [28].

From Requirements to Automated Acceptance Tests with the RSL Language 3

The process (Fig. 1) starts by producing RSL Requirements specifications based on
the set of constructs provided by the language and according to different perspectives
and concerns. From those Requirements, it is possible to generate RSL Test Cases spec-
ifications, and from these, to generate Test Scripts. Finally, those test scripts can be
automatically executed by the Robot Test Automation Tool1 in the application under
test.

This paper extends [28] in the following aspects:

– It extends Sect. “2.2 – Tests Specification” by detailing the grammar of RSL in
what concerns the following constructs: UseCaseTest, TestScenario, TestStep,
TestOperation and TestCheck.

– It adds new figures: one to illustrate the RSL/Tests Extension and another to illustrate
the Mapping process between GUI elements and keywords.

– It restructures Sect. 4 by splitting it into two sections: Sect. 4 to describe the overall
approach; Sect. 5 called “5 - Illustrative Example” where it illustrates, in more detail,
the applicability of the overall approach over a fictitious online store developed to
practice and validate the test automation.

– It extends the state of the art.

This paper is organized in 7 sections. Section 2 overviews the RSL language, show-
ing its architecture, levels of abstraction, concerns and grammar. Section 3 introduces
the concepts of the selected test automation tool, the Robot Framework. Section 4
presents the proposal approach with a running and illustrative example. Section 5
presents a case study illustrating the overall approach. Section 6 identifies and analyzes
related work. Finally, Sect. 7 presents the conclusion and future work.

2 RSL Language

ITLingo research initiative intends to develop and apply rigorous specification lan-
guages for the IT domain, such as requirements engineering and testing engineering,
with the RSL (Requirements Specification Language) [7–10,17,18]. RSL provides a
vast set of logically organized constructs in views that describe different concerns.
These constructs are defined by linguistic patterns which are represented textually
according to concrete linguistic styles [5]. RSL can be used and adapted by different
organizations because it is a process and tool independent language [5,22]. The con-
structs used by RSL can be classified according to two perspectives [22]: concerns and
abstraction levels. The concerns are: active structure (subjects), behaviour (actions),
passive structure (objects), requirements, tests, other concerns, relations and sets. The
abstraction levels are: business, application, software and hardware levels. This paper
focuses the discussion on the requirements and tests concerns and, in particular, focuses
on the RSL constructs particularly supportive of use case approaches (e.g. actors, use
cases, data entities and involved relationships) as it is further discussed in [22].

1 http://robotframework.org/.

http://robotframework.org/

4 A. C. R. Paiva et al.

2.1 Requirements Specification

Figure 2 shows a part of the RSL metamodel. It defines the hierarchy established among
requirement types, namely: goal, functional requirement, constraint, use case, user story
and quality requirement. This paper focuses only on the discussion of UseCase require-
ment and test types.

Fig. 2. RSL partial metamodel: the hierarchy of requirements [28].

RSL specifications based on Use Cases may involve defining some views with their
inherent constructs and relationships, namely:

– DataEntity view: defines the structural entities within an information system, com-
monly associated with data concepts captured and identified from domain analysis.
A Data Entity denotes an individual structural entity that may include specifying
attributes, foreign keys, and other verification data constraints;

– DataEntityCluster view: denotes a cluster of various structural entities that have a
logical arrangement with each other;

– Actor view: defines the participants of Use Cases or user stories. They represent end
users and external systems that interact directly with the system under study and,
in some particular situations, may represent timers or events that trigger the start of
some Use Cases;

– Use Case view: defines the use cases of a system under study. Traditionally, a use
case means a sequence of actions that one or more actors perform on a system to
achieve a specific outcome [12].

2.2 Tests Specification

RSL supports Test Cases specification and generation directly from the requirements
specifications. As shown in Fig. 3, RSL provides an hierarchy of Test constructs that
supports specifying the following test case specializations [22]:

– DataEntityTest are obtained from equivalence class partitioning and boundary value
analysis techniques applied over the domains defined for the DataEntities [23] in
RSL DataEntities;

From Requirements to Automated Acceptance Tests with the RSL Language 5

Fig. 3. RSL partial metamodel: the hierarchy of Tests [28].

– UseCaseTest explores different sequences of steps defined in RSL use cases’ sce-
narios, and associates data values to the involved DataEntities;

– StateMachineTest applies different algorithms to traverse RSL state machines so that
different test cases can be defined that correspond to valid or invalid paths through
their state machine;

– AcceptanceCriteriaTest defines acceptance criteria based on two distinct
approaches: scenario based (i.e., based on the Given-When-Then pattern) or rule
based; this test case is applied generically to any type of RSL Requirement.

Regardless of these specializations, a Test shall be set to Valid or Invalid depending on
the intended situation. In addition, it is possible to establish relationships with other test
cases through TestsRelation; these relationships can be classified as Requires, Supports,
Obstructs, Conflicts, Identical, and Relates.

With respect to the different RSL Test constructs described, UseCaseTests best fit
the acceptance test. Figure 4 shows the structure and relationships of UseCaseTests.
A UseCaseTest (Listing 1.1) inherits UseCase data associated with it, including
Actors. Optionally, it is possible to add variables for testing purposes as well.

An UseCaseTest may have different TestScenarios (Listing 1.2). Each scenario
must have, at least, one TestStep and, if necessary, values assigned to DataEntities
and V ariables. Since DataEntities are entities of the Application Under Test, it may
be useful to create instances of these entities and assign them values that may be used
later in test cases.

6 A. C. R. Paiva et al.

Fig. 4. RSL/tests extension.

Listing 1.1. UseCaseTest RSL grammar [31].

UseCaseTest:
‘UseCaseTest’ name=ID (nameAlias=STRING)? ‘:’ type=TestType (‘[’
‘useCase’ useCase=[UseCase | QualifiedName]
(‘actorInitiates’ actorInitiates=[Actor | QualifiedName])
(‘actorParticipates’ actorParticipates+=RefActor)?
(‘background’ background=[UseCaseTest | QualifiedName])?
(variables+=TestVariable)∗
(scenarios+=TestScenario)∗
(tags+=Tag)∗
(‘description’ description=STRING)?
‘]’)?;

Variables are temporary data that may be exchanged among TestSteps, e.g., a vari-
able may be used to save text needed to validate the dynamic content on the GUI.

Listing 1.2. TestScenario RSL grammar [31].

TestScenario:
‘testScenario’ name=ID (nameAlias=STRING)? ‘:’ type=ScenarioType (‘[’
((isConcrete ?= ‘isConcrete’) | (isAbstract ?= ‘isAbstract’))?
(‘variable’variable= [TestVariable | QualifiedName] (‘withValues’ ‘(’
variableTable= DataVariableValues ‘)’))?
(‘dataEntity’ entity= [DataEntity | QualifiedName] (‘withValues’ ‘(’ entityTable=
DataAttributeValues ‘)’))?
(‘executionMode’ mode=(‘Sequential’|‘Parallel’))?
(‘description’ description=STRING)?
testSteps+= TestStep+
‘]’)?;

The TestStep (Listing 1.3) is classified by a StepOperationType and, optionally,
by a StepOperationSubType. The operation types are used to define the action that
are performed in each step.

From Requirements to Automated Acceptance Tests with the RSL Language 7

Listing 1.3. TestStep RSL grammar [31].

TestStep:
‘step’ name=ID ‘:’ type=StepOperationType (‘:’ extension=OperationExtension)? (‘[’
(simpleTestStep= SimpleTestStep);

OperationExtension:
(subType=StepOperationSubType)
((target=TestOperationTarget)|(check=TestCheck))?;

enum StepOperationType: Actor PrepareData | Actor CallSystem | System Execute | System ReturnResult | Other |
None;

enum StepOperationSubType: OpenBrowser | CloseBrowser | Reload | GetData | PostData | Select | Click | Over |
Check | Other;

There are four general types of operations performed in TestSteps [30]:

– Actor PrepareData: input data will be entered by the actor, such as text, pass-
words or even choose a file to upload;

– Actor CallSystem: actions performed by the actor in the application, e.g., click a
button, select checkbox;

– System ReturnResult: collect application data to be stored in temporary vari-
ables. This is usually helpful to perform some type of verification;

– System Execute: actions executed by the system, e.g., open the browser and vali-
dations.

The StepOperationSubTypes are an extension of the previous types specifying
the operations performed. These sub types are [31]:

– Open/CloseBrowser: action to open/close the browser;
– Reload: action to reload the browser page;
– GetData: action to collect specific data from the AUT;
– PostData: action to post specific data to the AUT;
– Select/Click/Over: to specify the action to be performed in an AUT element;
– Check: action to verify some AUT content or response; Each step operation must

have a target (TestOperationTarget) or a verification (TestCheck) depending on the
action associated (Listing 1.4).

If the action is an interaction with a GUI element, the TestOperationTarget (List-
ing 1.4) will specify that element through the OperationTargetType. It can be a but-
ton, a generic element, a checkbox or a list. Additionally, the OperationTargetType
may also be used to clarify if such element is used to “write to” or to “read from”.
Finally, the TestOperationTarget can also have a description that is sent as a param-
eter through a variable value or a string.

8 A. C. R. Paiva et al.

Listing 1.4. TestOperation and TestCheck RSL grammar [31].

TestOperationTarget:
(type=OperationTargetType)
((variable+=[DataAttribute | QualifiedName] (‘,’variable+=[DataAttribute |
QualifiedName])∗)|
(‘(’ content+=(STRING) (‘,’content+=STRING)∗ ‘)’))?;
enum OperationTargetType : button | element | checkbox | listByValue | readFrom |
writeTo;

TestCheck:
(type=CheckType) (‘(’
(variable=[DataAttribute | QualifiedName] ‘=’ expected=[DataAttribute |
QualifiedName])?
(‘text’ (textVariable=[DataAttribute | QualifiedName]| textString=STRING))?
(‘timeout’ (timeoutVariable=[DataAttribute | QualifiedName]| timeoutINT=
DoubleOrInt) metric=Metric?)?
(‘limit’ (limitVariable=[DataAttribute | QualifiedName]| limitINT=INT))?
(‘url’ (urlVariable=[DataAttribute | QualifiedName]| urlString=STRING))?
(‘code’ (codeVariable=[DataAttribute | QualifiedName]| codeString=STRING))?
‘)’);
enum CheckType: textOnScreen | textOnElement | elementOnScreen | responseTime | variableValue | script | screen |

Other | None;

The TestCheck defines the validation to perform in the step where it was specified.
There are seven types of validations (CheckTypes) and each of them has different
parameters. Table 1 shows the set of validations available. Each TestScenario must
end with a TestStep that has a TestCheck. If the check succeeds the test passes. If the
check does not succeeds, the test fails.

Table 1. Test step validations [31].

CheckType Parameter Validation

textOnScreen text checks if a specific text is presented in the GUI

textOnElement text checks if a specific text is presented in a specific element
of the GUI

elementOnScreen limit? checks if a specific element is presented in the GUI.
If a limit is sent as parameter checks if a specific
element appears less than the limit established

responseTime timeout checks if the response time is less or equal
than the given timeout

variableValue variable checks if a variable value is equal to the expected value

expected

screen URL checks if the page represents the given URL

script Code uses a custom script to validate an unusual case

3 Robot Framework

Test cases can be run manually by the tester or automatically by a test automation tool.
When a test case is run manually, the tester must execute all test cases and have to
repeat the same tests several times throughout the product life cycle. On the other hand,

From Requirements to Automated Acceptance Tests with the RSL Language 9

when test cases are run automatically, there is the initial effort to develop test scripts,
but from there, the execution process will be automatic. Therefore, if a test case is to be
run multiple times, the automation effort will be less than the effort of frequent manual
execution.

The Robot framework stands out for its powerful keyword-based language, which
includes out-of-the-box libraries. The robot does not require any implementation as it
is possible to use keywords with implicit implementations (using specific libraries such
as Selenium2). Robot is open source and related to acceptance test-driven development
(ATDD) [27]. It is operating system independent and is implemented natively in Python
and Java, and can be run on Jython (JVM) or IronPython (.NET).

The structure of the script is simple and can be divided into four sections. The
first section, Settings, where the paths to helper files and libraries used are set. The
second section, Variables, specifies the list of variables used as well as the associated
values. The third and most important section is the Test Cases, where test cases are
defined. Finally, the Keywords section defines custom keywords to implement the test
cases described in the Test Cases section. Among all four sections, only Test Cases is
mandatory.

As seen in the example shown in Listing 1.5, the libraries used are initially defined.
One of the most widely used is the Selenium library, which introduces keywords related
to interactive application testing, such as ‘Open Browser’ and ‘Input text’. The variables
section assigns ‘Blouse’ to the variable ‘product’ so whenever ‘product’ is used it has
the value ‘Blouse’. The Keywords section defines keywords and their parameters. In
test cases that use keywords, the values are assigned to the corresponding parameters,
placing the values in the same place where the parameters are set.

Listing 1.5. Robot Framework specification example [28].

∗∗∗ Settings ∗∗∗
Documentation Web Store Acceptance Test
Library Selenium2Library

∗∗∗ Variables ∗∗∗
${product} Blouse

∗∗∗ Test Cases ∗∗∗
Login
Open the browser on <www.http://automationpractice.com>
Input Text id=searchBar ${product}
...

∗∗∗ Keywords ∗∗∗
Open the browser on <$(url)>

Open Browser $(url)

4 Proposed Approach

Although it is considered a good practice to start testing activities early in the project,
this is not frequently the common situation due to the traditional separation between the
requirements and testing phases. This research intends to reduce this problem through a

2 www.seleniumhq.org/.

www.seleniumhq.org/

10 A. C. R. Paiva et al.

framework that encourages and supports both requirements and tests practices, namely
by generating test cases from requirements or, at least, foster the alignment of such
test cases with requirements. The proposed approach (defined in Fig. 5) begins with the
(1) requirements specification that serves as a basis for the (2) test cases specification,
which can be further (3) refined by the tester. Then, (4) tests scripts are generated auto-
matically from the high-level test cases, and (5) associated the Graphical User Interface
(GUI) elements. Finally, (6) these test scripts are executed generating a test report.

Fig. 5. Proposed approach (UML activity diagram) [31].

This set of tasks covers the process of acceptance tests in interactive applications
from the specification of requirements to the execution of tests. Applying the approach
will establish an alignment between the specification of requirements and the specifi-
cation of tests, in addition to increasing the processes automation. Besides the use and
extension of the RSL grammar, the approach also uses support tools such as the Robot
framework and Web Scrapper.

4.1 Specify Requirements

The first task of this approach is the requirements definition, an activity that usu-
ally involves the intervention of requirements engineers, stakeholders and eventually
testers. After reaching a consensus, the specification of the requirements in RSL fol-
lows, through the constructs provided by the language that most fit the requirements
domain. In this approach, the specification focuses on the most relevant RSL con-
structs at the application and software level, namely: Actor, UseCase, DataEntity
and involved relationships. This task is usually performed by business analysts or by
requirement engineers.

4.2 Specify Test Cases

UseCaseTests are derived from the various process flows expressed by a RSL
UseCase. Each test contains multiple test scenarios which encompasses of a group
of test steps. From the requirement specifications, it is possible to specify test cases.
UseCaseTest construct begins by defining the test set, including ID, name and the
usecasetype. Then it encompasses the references keys [UseCase] indicating the Use
Case in which the test is proceeding and [DataEntity] referring to a possible data
entity that is managed.

In the UseCaseTest specification, the respective UseCase and DataEntities
specifications are associated, temporary variables are initialized, the TestScenarios

From Requirements to Automated Acceptance Tests with the RSL Language 11

are specified where values are assigned to the variables and TestSteps are inserted
which contain the necessary information for the test scripts.

4.3 Refine Test Cases

Generated test cases may be refined manually (e.g., assign values to entities and create
temporary variables), which results in other test cases.

The information introduced in the requirements specification phase and the RSL
constructs allow to simplify the test cases construction.

The DataEntities and the temporary V ariables are fundamental for transmitting
data between the TestSteps involved in the test and are defined within TestScenarios.

The values of DataEntities and V ariables may be defined in table. By using this
table structure, when an attribute is associated with N values, the test scenario may be
executed N times (one time for each value in the table).

4.4 Generate Test Scripts

Once the specification is complete, the generation of the test scripts for the Robot tool
follows. This generation process is based on relations established between the RSL
specification and the syntax of the Robot framework. An association of the RSL con-
cepts with the Robot framework syntax and some of the keywords made available by
the Selenium library are shown in Table 2.

Table 2. Mapping between test case (RSL) and test scripts (Robot) [28].

Step type Operation
extension type

Operation
extension

Keyword generated

Actor PrepareData Input readFrom INPUT TEXT $locator $variable

Actor CallSystem Select checkbox SELECT CHECKBOX $locator

list by value SELECT FROM LIST BY VALUE
$locator $value

Click button CLICK BUTTON $locator

element CLICK ELEMENT $locator

Over – MOUSE OVER $locator

System ReturnResult GetData writeTo $variable GET TEXT $locator

System Execute OpenBrowser – OPEN BROWSER $url

CloseBrowser – CLOSE BROSER

PostData readFrom INPUT TEXT $locator $variable

Check textOnPage PAGE SHOULD CONTAIN $text

elementOnPage PAGE SHOULD CONTAIN
ELEMENT $locator $msg? $limit?

textOnElement ELEMENT SHOULD CONTAIN
$locator $text

responseTime WAIT UNTIL PAGE CONTAIN
ELEMENT $locator $timeout?

variableValue $variable = $expected

jScript EXECUTE JAVASCRIPT $code

12 A. C. R. Paiva et al.

4.5 Map GUI Elements to Keywords

At this phase of the process, there is the need to complete the test scripts generated
previously with the locators [26], i.e. queries that return a single GUI element which
are used to locate the target GUI elements (e.g., GUI element identifier, xpath, CSS
selector).

This mapping can be established by the user inserting directly the identifiers of the
UI elements in the test script, or by using a ‘point and click’ process (similar to the one
presented in [21]). In this last option Table 2, the user accesses the AUT and, with the
help of the Web Scrapper, points to the desired elements.

The Web Scrapper saves the locators (unique CSS selector) and exports this infor-
mation to JSON code. Then, the tester can execute the Mapping script that creates a
XML file with the relation between locators found and the ones missing from the Robot
test script generated previously. For this process to succeed, it is important to maintain
consistency between the descriptions of the elements in both Web Scrapper and test case
specification. Finally, the tester may execute the Replacement Script that completes the
Robot Script with the locators based on the data provided in the XML file.

Fig. 6. Map GUI Elements to keywords (UML activity diagram) [31].

4.6 Execute Tests

The generated test script is executed by using the Robot framework. For that, the user
should use, at the command prompt, following command:

robot[script name].robot
During execution, a browser instance will open performing automatically every

steps specified in the test script while showing the results of each test case at the com-
mand prompt.

5 Illustrative Example

In order to illustrate and discuss the suitability of the proposed approach, we show its
application with an interactive web application as the application under test (AUT). We

From Requirements to Automated Acceptance Tests with the RSL Language 13

selected the “Web Store”3 app: This is a popular e-commerce web site developed on
purpose to practice test automation. It simulates common online shopping workflows.
Figure 7 shows the home page of this online store.

Fig. 7. Web Store application - Search Product [31].

We consider the use case “Search Product” because it is a simple and illustrative
example. In this use case, the user searches for a product by its name and the number
of items matched must be equal to the expected one defined in the respective test case.

After the requirements specification, that is partially shown in Listing 1.6, it follows
the definition of test cases, where the relationships between the (use case) requirement
and the (use case) tests are kept. A UseCaseTest is generated or manually created
based and aligned with the corresponding UseCase. After that, the test case can be
refined with TestScenarios, TestSteps and references to involved DataEntities
and V ariables.

Listing 1.6. Example of a RSL specification of DataEntity Actor and UseCase [28].

DataEntity e Product ‘‘Product’’ : Master [
attribute ID ‘‘ID’’ : Integer [isNotNull isUnique]
attribute title ‘‘title’’ : Text [isNotNull]
attribute price ‘‘Price’’ : Integer [isNotNull]
attribute composition ‘‘Composition’’ : Text
attribute style ‘‘Style’’ : Text
attribute properties ”Properties” : Text
primaryKey (ID)]

Actor aU Customer ‘‘Customer’’ : User [
description ”Customer uses the system”]

UseCase uc Search ‘‘Search Products’’ : EntitiesSearch [
actorInitiates aU Customer
dataEntity e Product]

...

3 http://automationpractice.com.

http://automationpractice.com

14 A. C. R. Paiva et al.

Listing 1.7 shows a test case specified and refined with the necessary information to
define such tests. In this case, two variables were associated. The first one, v1.search,
is the keyword used to input the name of the search products; the second variable,
v1.expected, is used to define the number of results expected.

Listing 1.7. Example of ‘Search Products’ test case RSL specification [28].

UseCaseTest t uc Search ‘‘Search Products’’ : Valid [
useCase uc Search actorInitiates aU User
description ‘‘As a User I want to search for a product by name or descripton’’
variable v1 [

attribute search: String
attribute expectedResults: String

]

testScenario Search Products :Main [
isConcrete
variable v1 withValues (
| v1.search | v1.expectedResults +|
| ‘‘Blouse’’ | ‘1’ +|
| ‘‘Summer’’ | ‘3’ +|)
step s1:Actor CallSystem:Click element(‘Home’)[‘‘The User clicks on the Home’ element’’]
step s2:Actor PrepareData:PostData readFrom v1.search [‘‘The User writes a word or phrase in the search text field

’’]
step s3:Actor CallSystem:Click button(‘Search Product’)[‘‘The User clicks on the ‘Search’ button’’]
step s4:System Execute:Check elementOnScreen(limit v1.expectedResults) [‘‘The

System checks if the number of results is the expected one’’]]

In the TestScenario (Listing 1.7) it is defined the ordered steps that are necessary
to perform the actions to get the number of search results and compare it with the
expected number.

Once the test case specification is completed, it follows the generation of the equiva-
lent test scripts for the Robot framework: that code generator (integrated in the ITLingo-
Studio) generates a set of test scripts (in Robot language), resulting in a script similar to
the one shown in Listing 1.8. However, there still miss the elements locators specified
in the script, so that the Robot framework could know in which concrete elements of
the AUT it shall perform the command specified by the test script.

Listing 1.8. Generated Test Script example (in Robot) [28].

∗∗∗ Variables ∗∗∗
${search1} Blouse
${search2} Summer
${expectedResults1} 1
${expectedResults2} 4

∗∗∗ Test Cases ∗∗∗
Search Products−Test 1

[Documentation] As a User I want to search for a product by name or descripton
Click element [Home]
Input text [Search Bar] ${search1}
Click button [Search Product]
Page Should Contain Element [Product box] limit=${expectedResults1}

Search Products−Test 2
[Documentation] As a User I want to search for a product by name or descripton
Click element [Home]
Input text [Search Bar] ${search2}
Click button [Search Product]
Page Should Contain Element [Product box] limit=${expectedResults2}

From Requirements to Automated Acceptance Tests with the RSL Language 15

To provide this missing information, it is necessary to map GUI elements with
appropriate keywords as suggested in Fig. 6.

Fig. 8. Web Scrapper [31].

For that purpose the tester shall access the AUT and shall point to the desired ele-
ments with the help of the Web Scrapper (Fig. 8). The information of every locators is
exported to the JSON file. After executing the Mapping script, the XML file (Fig. 9) is
generated with the information about the missing locators of the previous phase. Finally,
the replacement scripts fills in the missing information resulting in a concrete script as
illustrated in Listing 1.9. In this Listing it is possible to see that css : img.logo is the
CSS locator for the element that redirects the user to the “Home Page”. Once complete,
the test script will be able to be executed.

Listing 1.9. Test Script with GUI elements xpath (in Robot) [31].

∗∗∗ Variables ∗∗∗
${search1} Blouse
${search2} Summer
${expectedResults1} 1
${expectedResults2} 4

∗∗∗ Test Cases ∗∗∗
Search Product−Test 1

[Documentation] As a User I want to search for a product by name or descripton
Click Element css:img.logo
Input text css:input.search query ${search1}
Click button css:div.col−sm−4 button.btn
Page should contain element css:li.ajax block product limit=1

Search Product−Test 2
[Documentation] As a User I want to search for a product by name or descripton
Click Element css:img.logo
Input text css:input.search query ${search2}
Click button css:div.col−sm−4 button.btn
Page should contain element css:li.ajax block product limit=3

16 A. C. R. Paiva et al.

Fig. 9. XML file – Map between locators and test script [31].

Once the script is completely filled in, these test scripts can be executed and such test
results can be obtained, as shown in Fig. 10. Regarding the use case “product search”,
when searching for products associated to the word Blouse (Test 1), the test returned
“1” which is the expected result and so, the test succeeded. On the other hand, when
searching for products related to the word Summer (Test 2), the test returned “4”
products which is different from the expected result (“3”) and so, the test failed.

Fig. 10. Result of the test case execution [28].

6 Related Work

It is common to derive acceptance test cases for complex IT systems manually from
functional requirements described in natural language. This manual process is chal-
lenging and time consuming.

One way to diminish this effort is to generate test cases automatically from textual
or graphical models. This is not a new idea. In fact, there are some approaches that
require graphical models (e.g. workflow models [16], or domain models [13]) or, others,
requiring textual models (e.g., use cases [14,15]) of the system.

The approach followed by [16] uses a workflow notation in which the focus is the
casual relationship of the steps without specification of detailed message exchange and
data. From these models it is possible to generate end-to-end test cases that are auto-
mated using the Junit4 testing framework. This approach does not align requirements
and tests like the one described in this paper.

In [13], the UMTG (Use Case Modeling for System Tests Generation) approach
generates automatically system test cases from use case specifications and domain mod-
els (class diagram and constraints). This research work does not include any test execu-
tion automation tool to run the generated tests.

Hsieh et al. [14] proposed the Test-Duo framework for generating (and executing)
acceptance tests from use cases. The testers add specific use cases annotations to clar-
ify the system behaviour. The final test scripts are compatible with Robot framework.
However, this approach does not align requirements with tests.

4 https://junit.org/junit5/.

https://junit.org/junit5/

From Requirements to Automated Acceptance Tests with the RSL Language 17

TestMEReq is an automated tool for early validation of requirements [15] described
by semi-formalized abstract models called Essential Use Cases. From these abstract
models it generates abstract test cases to help validate the requirements. This approach
does not include the execution of the generated abstract test cases.

In [29], the authors present the design of a test automation platform, ETAP-Pro, to
test end-to-end business processes that aims to overcome some challenges in validating
business processes. ETAP-Pro works over BPMN models and is based on a keyword-
driven approach. It generates test cases specifications in Gherkin. This approach pro-
motes alignment between test cases and requirements since it maintains traceability
information among test cases, requirements and keywords. However, test scripts should
be generated manually to be executed afterwords.

In contrast with some tools and approaches mentioned above, our proposal particu-
larly promotes the alignment between high-level requirements and tests specifications,
and with low-level test scripts, that is ensured by the adoption of languages like RSL
and Robot. In addition, this proposal promotes the quality and productivity of both
(Requirements an Testing) tasks by considering model-to-model transformation fea-
tures (e.g., RSLfrom Requirements into RSL Test Cases, or from RSL Test Cases into
Robot Test Scripts), and execution of Robot Test Scripts, with the integration of tools
like ITlingo-Studio and Robot framework.

7 Conclusion

This paper describes a model-based testing approach where acceptance test cases are
derived from RSL requirements specifications and automatically adapted to the test
automation Robot framework to be executed against a web application under test.

This process begins with the requirements elicitation and specification in the RSL.
From these requirement specifications (defined in RSL) are created manually or gen-
erated test case specifications (also in RSL), which are strongly kept aligned. When
these test cases are completely defined, a second model-to-model transformation pro-
cess is performed, which produces quasi-executable test scripts (in Robot language),
which needs to be mapped to concrete GUI elements before be executable by the Robot
framework. This generation is based on mappings between the characteristic constructs
of RSL and the GUI elements identifiers of the AUT with the syntax of the Robot
automation tool. Once test scripts are completed, they are executed and the results pre-
sented in a test execution report.

This approach encourages the practice of specifying both requirements and tests
during the early stages of the projects, and keeping these specifications aligned with
each other. It also promotes the productivity by reducing manual effort, time and
resources dedicated to the development of tests, also ensures higher quality of require-
ments. The adoption of a language like RSL, that supports both requirements and tests
specification in a more consistent and systematic way, is therefore less prone to errors
and ambiguities.

As future work, we intend to extensively apply this approach in both controlled
and real-world scenarios. We also intend to further improve the productivity of the pro-
posed approach by automatically generating RSL test specifications from RSL require-
ment specifications (e.g., considering other types of test cases and other situations like

18 A. C. R. Paiva et al.

security or performance) and generating these test specifications into executable
test scripts that may be executed by multiple test automation frameworks, such as
Gherkin/Cucumber5.

Acknowledgements. This work was partially supported by national funds under FCT projects
UID/CEC/50021/2019 and 02/SAICT/2017/29360.

References

1. Cockburn, A.: Writing Effective Use Cases, 1st edn. Addison-Wesley, Boston (2000)
2. Kovitz, B.L.: Practical Software Requirements: Manual of Content and Style. Manning Pub-

lications, Greenwich (1998)
3. Robertson, S., Robertson, J.: Mastering the Requirements Process: Getting Requirements

Right, 3rd edn. Addison-Wesley Professional, Boston (2012)
4. Withall, S.: Software Requirements Patterns, 1st edn. Microsoft Press (2007)
5. Silva, A.R.: Linguistic patterns and linguistic styles for requirements specification (i): an

application case with the rigorous RSL/business-level language. In: Proceedings of the 22nd
European Conference on Pattern Languages of Programs. ACM (2017)

6. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques, 1st edn.
Springer, Heidelberg (2010)

7. Ferreira, D.A., Silva, A.R.: RSLingo: an information extraction approach toward for-
mal requirements specifications. In: 2nd IEEE International Workshop on Model-Driven
Requirements Engineering, MoDRE 2012 - Proceedings, pp. 39–48 (2012)

8. Videira, C., Ferreira, D., Silva, A.R.: A linguistic patterns approach for requirements specifi-
cation. In: Proceeding 32nd Euromicro Conference on Software Engineering and Advanced
Applications (Euromicro 2006). IEEE Computer Society (2006)

9. Ferreira, D.A., Silva, A.R.: RSL-PL: a linguistic pattern language for documenting software
requirements. In: 3rd International Workshop on Requirements Patterns, RePa 2013 - Pro-
ceedings, pp. 17–24 (2013)

10. Ferreira, D.A., Silva, A.R.: RSL-IL: an interlingua for formally documenting requirements.
In: 3rd International Workshop on Model-Driven Requirements Engineering, MoDRE 2013
- Proceedings, pp. 40–49 (2013)

11. Silva, A.R., Saraiva, J., Ferreira, D., Silva, A.R., Videira, C.: Integration of RE and MDE
paradigms: the ProjectIT approach and tools. IET Softw. 1, 294–314 (2007)

12. Jacobson, I., et al.: Object Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, Boston (2015)

13. Wang, C., Pastore, F., Goknil, A., Briand, L., Iqbal, Z.: Automatic generation of system test
cases from use case specifications. In: Proceedings of the 2015 International Symposium on
Software Testing and Analysis, pp. 385–396 (2015)

14. Hsieh, C., Tsai, C., Cheng, Y.C.: Test-duo: a framework for generating and executing auto-
mated acceptance tests from use cases. In: 8th International Workshop on Automation of
Software Test, AST 2013 - Proceedings, pp. 89–92 (2013)

15. Moketar, N.A., Kamalrudin, M., Sidek, S., Robinson, M., Grundy, J.: TestMEReq: generat-
ing abstract tests for requirements validation. In: Proceedings - 3rd International Workshop
on Software Engineering Research and Industrial Practice, SER and IP 2016, pp. 39–45
(2016)

5 https://cucumber.io/.

https://cucumber.io/

From Requirements to Automated Acceptance Tests with the RSL Language 19

16. Boucher, M., Mussbacher, G.: Transforming workflow models into automated end-to-end
acceptance test cases. In: Proceedings - 2017 IEEE/ACM 9th International Workshop on
Modelling in Software Engineering, MiSE 2017, pp. 68–74 (2017)

17. Silva, A.R., Paiva, A.C.R., Silva, V.: Towards a test specification language for information
systems: focus on data entity and state machine tests. In: Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Development (MODELSWARD)
(2018)

18. Silva, A.R., Paiva, A.C.R., Silva, V.: A test specification language for information systems
based on data entities, use cases and state machines. In: Hammoudi, S., Pires, L., Selic, B.
(eds.) MODELSWARD 2018. CCIS, vol. 991, pp. 455–474. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-11030-7 20

19. Moreira, R.M.L.M., Paiva, A.C.R., Nabuco, M., Memon, A.: Pattern-based GUI testing:
bridging the gap between design and quality assurance. Softw. Test. Verif. Reliab. 27(3),
e1629 (2017)

20. Moreira, R.M.L.M., Paiva, A.C.R.: PBGT tool: an integrated modeling and testing environ-
ment for pattern-based GUI testing. In: Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE 2014, pp. 863–866 (2014)

21. Paiva, A.C.R., Faria, J.C.P., Tillmann, N., Vidal, R.A.M.: A model-to-implementation map-
ping tool for automated model-based GUI testing. In: Lau, K.-K., Banach, R. (eds.) ICFEM
2005. LNCS, vol. 3785, pp. 450–464. Springer, Heidelberg (2005). https://doi.org/10.1007/
11576280 31

22. Silva, A.R.: Rigorous specification of use cases with the RSL language. In: Proceedings of
International Conference on Information Systems Development 2019. AIS (2019)

23. Bhat, A., Quadri, S.M.K.: Equivalence class partitioning and boundary value analysis - a
review. In: 2nd International Conference on Computing for Sustainable Global Development
(INDIACom) (2015)

24. Paiva, A.C.R.: Automated specification-based testing of graphical user interfaces. Ph.D. the-
sis, Faculty of Engineering of the University of Porto, Porto, Portugal (2007)

25. ISTQB, ISTQB & #x00AE; Foundation Level Certified Model-Based Tester Syllabus (2015)
26. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Approaches and tools for automated end-to-

end web testing. In: Advances in Computers, 1st edn., vol. 101, pp. 193–237. Elsevier Inc.
(2016)

27. ISTQB, ISTQB & #x00AE; Foundation Level Extension Syllabus Agile Tester, p. 28 (2014)
28. Maciel, D., Paiva, A.C.R., Silva, A.R.: From requirements to automated acceptance tests of

interactive apps: an integrated model-based testing approach. In: 14th International Confer-
ence on Evaluation of Novel Approaches to Software Engineering (ENASE) (2019)

29. Paiva, A.C.R., Flores, N.H., Faria, J.C.P., Marques, J.M.G.: End-to-end automatic business
process validation. In: the 8th International Symposium on Frontiers in Ambient and Mobile
Systems (FAMS) (2018)

30. Silva, A.R., Savic, D., et al.: A pattern language for use cases specification. In: Proceedings
of EuroPLOP 2015. ACM (2015)

31. Maciel, D.A.M.: Model based testing - from requirements to tests. MSc thesis, Master in
Informatics and Computing Engineering, Faculty of Engineering of the University of Porto,
Portugal (2019)

https://doi.org/10.1007/978-3-030-11030-7_20
https://doi.org/10.1007/11576280_31
https://doi.org/10.1007/11576280_31

	From Requirements to Automated Acceptance Tests with the RSL Language
	1 Introduction
	2 RSL Language
	2.1 Requirements Specification
	2.2 Tests Specification

	3 Robot Framework
	4 Proposed Approach
	4.1 Specify Requirements
	4.2 Specify Test Cases
	4.3 Refine Test Cases
	4.4 Generate Test Scripts
	4.5 Map GUI Elements to Keywords
	4.6 Execute Tests

	5 Illustrative Example
	6 Related Work
	7 Conclusion
	References

